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Abstract. The Particle-In-Cell (PIC) Code-Framework Warp is being developed by8

the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide9

the development of accelerators that can deliver beams suitable for high energy10

density experiments and implosion of inertial fusion capsules. It is also applied in11

various areas outside the Heavy Ion Fusion program to the study and design of12

existing and next-generation high-energy accelerators, including the study of electron13

cloud effects and laser wakefield acceleration for example. This paper presents an14

overview of Warp’s capabilities, summarizing recent original numerical methods that15

were developed by the HIFS-VNL (including Particle-In-Cell with Adaptive Mesh16

Refinement, a large-timestep “drift-Lorentz” mover for arbitrarily magnetized species,17

a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz boosted18

frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-19

based digital filtering), with great emphasis on the description of the mesh refinement20

capability. Selected examples of applications of the methods to the abovementioned21

fields are given.22
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1. Introduction48

The Particle-In-Cell (PIC) Framework Warp [1] was originally developed to simulate49

space-charge-dominated beam dynamics in induction accelerators for heavy-ion fusion50

(HIF). It is currently being developed primarily by the Heavy Ion Fusion Science51

Virtual National Laboratory (HIFS-VNL) collaboration, to guide the development of52

accelerators that can deliver beams suitable for high energy density experiments and53

implosion of inertial fusion capsules [2]. In recent years, the physics models in the code54

have been generalized, so that Warp can model beam injection, complicated boundary55

conditions, denser plasmas, a wide variety of accelerator lattice components, and the56

non-ideal physics of beams interacting with walls and plasmas. The code now has an57

international user base and is being applied to projects both within and far removed from58
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the HIF community. Ongoing or recent examples of applications outside HIF include59

the modeling of plasma traps for the production of anti-Hydrogen [3], Paul traps [4, 5],60

non-conventional Penning-Malmberg micro-trap [6], transport of electron beams in the61

UMER ring [7], ECR ion sources [8], capture and control of laser-accelerated proton62

beams [9], and fundamental studies of multipacting [10]. It is also applied to the study63

and design of existing and next generation high-energy accelerators including the study64

of electron cloud effects [11], coherent synchrotron radiation [12] and laser wakefield65

acceleration [13].66

Numerical simulations are essential for all aspects of the Heavy Ion Fusion67

Science program. Detailed simulations are needed for planning and interpreting the68

results of ongoing experiments, as well as for modeling physics of the NDCX-II69

accelerator (currently being assembled at Lawrence Berkeley National Laboratory) [14]70

and advanced fusion-driver concepts. In addition, simulations are the principal tools in71

basic beam physics studies, such as the dynamics of space-charge-dominated beams in72

the presence of stray electrons, neutralized drift-compression of intense beams, plasma73

injection, and the use of solenoids to transport high-current ion beams. Other activities74

include the exploration of basic questions of accelerator physics, such as emittance75

growth (dilution of the phase space), beam instabilities, formation of outlying particle76

populations called halos, the analysis of experimental data, and the optimization of77

accelerator components, such as the final focus beam optics system.78

Simulations are crucial to all these pursuits because, in the regimes of interest,79

the physics cannot be thoroughly captured by analytic means, due to the complicated80

geometries, the non-ideal applied fields, and the intense, non-uniform space-charge81

field of the beam along with plasma and stray charged particles. These studies82

have necessitated the introduction or development of advanced numerical methods,83

including methods to model multiple-species effects in accelerators and chambers,84

efficient ensemble methods, particle advance algorithms that allow a longer time step,85

and adaptive mesh refinement (AMR). The algorithms that have been implemented span86

the range between (a) “computationally intensive” massively-parallel methods based87

on low levels of approximation, typically with explicit solvers on uniform grids, small88

time steps, and large numbers of macroparticles, and (b) “algorithmically intensive”89

moderately-parallel methods using higher levels of approximations, typically involving90

implicit methods, global solvers, AMR grids, large time steps, and moderate numbers91

of macroparticles.92

Warp uses a flexible multi-species particle-in-cell model to describe beam dynamics93

and the electrostatic or electromagnetic fields in particle accelerators. While the core94

routines of Warp solve finite-difference representations of Maxwell’s equations and95

relativistic or non-relativistic motion equations, the code also uses a large collection96

of subordinate models to describe lattice elements (machine components) and such97

physical processes as beam injection, desorption, and ionization. Warp is written in98

a combination of Fortran for the computationally intensive tasks, Python for the high99

level controlling framework, and C for the interface between the two. The interface100



4

generator Forthon [15] is used to generate the necessary wrapping code which allows101

access at the Python level to the Fortran database and to the Fortran subroutines and102

functions. The use of dynamic loading of modules at the Python level gives to the103

user a very high degree of flexibility and expandability. Warp can be used as a code104

(the user gives input parameters, runs the main loop and gathers data from embedded105

diagnostics), as a framework (the user writes the main loop at the Pyhon level using106

existing modules and eventually additional modules developed by the user or by a third107

party), or in an intermediate mode, i.e. as a code with framework capability (the user108

uses the main loop completed by other modules). This design allows for great versatility109

while keeping the quantity and size of the core modules to a minimum, since specialized110

modules can be provided and maintained by the users who need them.111

A general description of the code including its Python interface is given in section112

2. Sections 3 and 4 present the latest developments in Warp in particle pushing and113

field solving algorithms, with great emphasis on mesh refinement. The various modes114

of operation with examples are given in section 5 and an outlook in section 6.115

2. General description116

Warp is a 3D time-dependent multiple-species particle-in-cell (PIC) framework, with the117

addition of an accelerator lattice description. Warped coordinates are used to advance118

particles in a curved beam pipe [16]. Self-fields are obtained via Poisson equations for119

the scalar and vector potentials, or via Maxwell equations for a full electromagnetic120

description, while simplified models are available for the self- magnetic and inductive121

forces for ultra-relativistic beams [17]. Warp also has 2D models, using Cartesian or122

cylindrical geometry, as well as a module representing the beam with a 4-D Vlasov123

formulation and with low-order moment equations. Models are available for background124

gas, wall effects (e.g. secondary emission of electrons using the subroutines from the125

Posinst code [18, 19]), stray electrons, space-charge-limited and source-limited particle126

emission, and atomic processes such as ionization.127

Elaborate initialization and runtime options allow realistic modeling of charged128

particle accelerators. A beam may be initialized with one of a broad selection of analytic129

distributions [20] or with a distribution synthesized from experimental data, or can be130

emitted from a flat or curved surface. The lattice description includes an extensive list131

of elements including electric or magnetic dipoles, quadrupoles, sextupoles, solenoids,132

accelerating gaps, etc. Lattice-element fields may be represented at several levels of133

detail, from simple hard-edge analytic forms to first-principles 3D calculations. The134

fields can be time-dependent. When hard-edged fields are applied to the particles,135

“residence corrections” are used, where, upon entering or exiting the element, the applied136

field is scaled by the fraction of the time-step spent inside the element. Poisson’s137

equation can be solved using several methods, including FFT and Multigrid. With138

multigrid, the Shortley-Weller method [21] for the subgrid-resolution description of139

conductors allows the use of complicated boundary conditions. With the FFT solvers,140
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capacity matrices can be used to incorporate internal boundary conditions. The141

electromagnetic (EM) solver is based on the Yee staggered discretization of the field142

components, using either standard Leapfrog finite-difference (FDTD) integration [22]143

or non-standard finite-difference (NSFD) [23]. Adaptive mesh refinement (AMR) is144

available with the multigrid Poisson solver [24], and mesh refinement (MR) is available145

with the electromagnetic solver [25].146

Warp’s parallelization is based on domain decomposition using the MPI library147

for message passing, and allows decomposition in 1, 2 or 3 dimensions. With the148

electrostatic solver, Warp allows independent spatial decompositions for particles149

and field quantities, enabling the particle and field advances to be load-balanced150

independently. In transverse-slice 2D runs, the field solution is repeated on each node,151

but solved in parallel by processors within a node. Parallel communications are typically152

performed at the Fortran level for core calculations and diagnostics, and sometimes153

(mostly for high level diagnostics and prototyping) at the Python level.154

WARP provides a very high level of flexibility to the user for data analysis and155

visualization. WARP has an extensive set of 2D and 3D plotting routines based on156

the graphical packages pygist [26] and Opyndx (python interface to OpenDX) [27].157

With Pygist, plots can be displayed on a screen allowing interactive manipulation, and158

they can be saved to disk in the vector CGM format, which is compact and portable.159

Opyndx is used to create stills and movies of 3D rendering for better understanding and160

intuition development of the increasingly complex physical phenomena being simulated.161

The rendering can be manipulated interactively and written to disk. Runtime diagnostic162

plots are made by a single processor, which assembles data from the other processors.163

Data can be saved into various portable binary file formats, including Python pickle,164

HDF5 (via pytables), PDB (Portable Data Binary from LLNL pact library) or any other165

I/O library that the user can access via Python. For highest efficiency, data dumps are166

made by having each processor write its data to a separate file. The user has direct167

access to all the data (even Fortran derived type objects), allowing data selection or168

reduction to be performed in-situ. Saving only the reduced datasets to disk for offline169

analysis significantly reduces the amount of data that is to be written.170

2.1. Python interface171

The user interface of Warp is Python, a high level, object oriented, interactive and172

scripting language designed for ease of use and flexibility. Warp is built as a module173

that is importable into a standard Python session. From Python, all of the data in174

Warp is accessible and its routines callable. An input file for Warp is a Python program,175

allowing use of the full richness of the Python programming language to set up, control,176

steer, diagnose and post-process a Warp simulation. This allows great flexibility in how177

Warp is used. Input files range from short files with minimal setup that use a standard178

advance scheme, to extensive collections of files that pick and choose the pieces of Warp179

that are used and carefully orchestrate how a simulation proceeds. A user can extend180
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Warp with his or her own collection of Python scripts, as well as Fortran, C or C++181

routines with Python wrappers.182

Much of Warp is written directly in Python. There is extensive Python code for183

handling the interface to various pieces of Warp, for example the multiple field solvers,184

the particle scrapers, the lattice description, diagnostics and plotting. These provide a185

high level interface for ease of use. The underlying computation intensive part of Warp186

is written in Fortran 95. The interface between the Fortran and Python is created by187

the Forthon package [15].188

Forthon generates the C code and runtime variable database which allows access189

to the Fortran data and wraps the Fortran subroutines and functions so that they are190

callable from Python. It first generates the interface from description files which lay191

out the modules, variables and subroutines that are to be accessible from Python, then192

creates a database linking the memory addresses of variables in the modules to Python193

level variables, allowing direct read and write access.194

Forthon uses Numpy for handling arrays which can be dynamically allocatable.195

In that case, Forthon keeps track of the location of the array, updating it as needed196

when the array is allocated or reallocated. Arrays can be allocated in either Fortran or197

in Python. For subroutines and functions, Forthon creates a Python callable wrapper198

in C that does the appropriate conversion of Python variables into Fortran accessible199

memory. When multi-dimensional arrays are passed in, Forthon checks the ordering200

and, if needed, does the appropriate transpose to put the array in Fortran ordering.201

Thus the ordering of indices is, to the user, the same in Python as it is in Fortran.202

Input arguments are checked for validity, ensuring that the input has the correct type203

and that arrays are dimensioned appropriately.204

Forthon provides wrapping for Fortran derived type variables. These are described205

in the variable description files, similarly to a Fortran module. For each instance of a206

derived type that is created, Forthon sets up a database of the memory, giving access207

to it from Python. Instances can be created in either Fortran or Python, and can be208

passed into Fortran from Python. A derived type can include instances of derived type,209

either statically or through a pointer, including instances of the same type.210

Warp makes extensive use of the capabilities of Forthon. The vast majority of data211

is handled using dynamically allocated multi-dimensional arrays. There are various uses212

of derived types, encapsulating data and allowing complex, hierarchical data structures.213

This code architecture allows rapid development and testing (in both Fortran and214

Python) of both the underlying code and the user input files.215

3. Particle pushers216

The default particle pusher is the so-called “Boris” pusher which is based on centered217

finite difference (leapfrog) and is second order [28], with optional “tanα/α” correction218

for exact gyration angle [29].219
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3.1. Hybrid Drift-Lorentz220

It was observed in [30] that the Boris pusher causes particles to gyrate with spuriously221

large radius for time steps that are large compared to the gyroperiod, albeit with the222

correct drift velocities (provided the gradients are still sampled adequately). A new223

solver that interpolates between the Boris velocity push and a drift kinetic advance was224

developed and implemented in Warp [31, 32]; it reproduces both the correct drift velocity225

and gyroradius for an arbitrarily large ratio of time step δt relative to cyclotron period226

τc, as well as correct detailed orbit dynamics in the small-timestep limit. Schematically,227

the mover updates the particle position using an interpolated velocity perpendicular228

to the magnetic field, v⊥,eff = αv⊥ + (1 − α)vd where v⊥ and vd are, respectively,229

the perpendicular component of the full particle velocity, including gyro motion but230

with a correction for magnetic-mirror forces and vd is the drift velocity, and α is an231

interpolation coefficient, α = 1/[1 + (ωcδt/2)
2]1/2, where ωc and δt are the cyclotron232

frequency and timestep, repsectively. The pusher has provided an order of magnitude233

or more saving in computing resources in the simulations of electron cloud effects in234

the HCX experiment [31, 33]. An implicit time-advance scheme incorporating drift-235

Lorentz interpolation has also been developed [32]. An alternative approach, which236

does not require explicit drift-velocity calculations and considerably relaxes but does237

not eliminate the δt/τc constraint, has been developed by Genoni et al. [34].238

3.2. Lorentz invariant advance239

The relativistic version of the Boris (or Hybrid Lorentz-Drift) particle pusher does not240

maintain strict Lorentz invariance, resulting eventually in unacceptably large inacuracies241

when modeling the transport of ultra-relativistic beams in accelerators. To this effect,242

an alternative to the Boris pusher that conserves strict Lorentz invariance (to machine243

precision) was developed and implemented in Warp, and its effectiveness demonstrated244

on the modeling from first principles of the interaction of a 500 GeV proton beam with245

a background of electrons [17]. The pusher has subsequently been implemented by246

others and has also proven useful for correctly capturing the drift speed of electrons of247

a highly magnetized relativistic electron-ion flow in astrophysical simulations using the248

code TRISTAN [35].249

3.3. linear maps250

For the modeling of high energy beams for which space charge effects are relatively251

weak, and thus time steps can be large compared to the residence time within lattice252

elements, particles are pushed using linear maps as (x,v)s+ds = M(x,v)s where x and253

v are respectively the position and velocity of the particles and M is a 6 × 6 transfer254

matrix. While Warp does not normally require definition of a “reference orbit”, the maps255

do assume a paraxial limit, but there are no difficulties in principle to augment the order256

of the map to include some nonlinear effects if these are deemed important. Mapping257
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is currently available for continuous “smooth” focusing, drifts, bends and quadrupoles.258

4. Field solvers and Mesh Refinement259

4.1. Field solvers260

4.1.1. Electrostatic/Magnetostatic Warp includes electrostatic and magnetostatic261

solvers. For electrostatic, either an FFT based solver or a multigrid based solver can be262

used to solve Poisson’s equation for the electrostatic potential. Only multigrid can263

be used with the magnetostatic solver, which solves the Poisson equation for each264

component of the vector potential. Various boundary conditions are supported, and265

both the FFT and multigrid methods allow internal conductors.266

The FFT solvers use standard methods. In Fourier space, solving Poisson’s equation267

is a simple division of the transformed charge density by k2. The solver assumes pipe-268

like boundary conditions. Transversely, a zero-Dirichlet boundary is applied using a269

sine transform, or a zero-Dirichlet with symmetry at the axis using a cosine transform.270

Along the z-axis, the pipe axis, a periodic transform is done. An alternate formulation271

does a tridiagonal matrix solve along the z-axis (instead of the FFT) - this is somewhat272

faster (since the tridiagonal solver scales as n which is faster than the n lnn scaling of273

the FFT) and allows Dirichlet boundaries in z. The solvers allow arbitrary Dirichlet274

boundary conditions, by placing the appropriate image charges near the boundary.275

Internal boundaries can be enforced using the standard capacity matrix method. The276

solvers include optional filtering in Fourier space.277

The multigrid solvers were implemented to allow arbitrary internal boundary278

conditions. Warp uses the standard second-order finite-difference stencil, 5 points279

in 2D and 7 points in 3D - multigrid is used to solve the resulting matrix system.280

Various versions of multigrid are implemented, including V-cycles, full multigrid, and281

full approximation multigrid. The V-cycles version is mostly used. For an isolated282

Poisson solve, full multigrid is faster than only V-cycles, but any advantage is lost when283

the V-cycles can use the solution from the previous time step as a first guess. The full284

approximation method is used when the solver directly includes a Boltzmann electron285

distribution, resulting in a non-linear system of equations. The exterior boundary286

conditions implemented include Dirichlet, zero-Neumann and periodic, with any of the287

conditions on each boundary plane. Internal boundary conditions are handled using the288

methods of Shortley and Weller [21], or of Hewett [36], applying Dirichlet conditions on289

the surface of conductors. The methods allow subgrid resolution of the location of the290

conductor, increasing accuracy with minimal computational cost. For grid points that291

are near the surface of a conductor, the finite difference form of Poisson’s equation is292

modified to include the location of the surface and its potential. The multigrid method293

easily incorporates this non-uniform, non-symmetric modification of the matrix system.294

Warp allows a variety of shapes for the conductors, such as cylinders, aperture plates295

and arbitrary surfaces of revolution (revolving about a line parallel to one of the grid296
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axis). The conductors can be combined, taking the union, intersection or difference of297

multiple conductors. This is handled at the Python level in an object oriented manner.298

Several additional field solvers are available, which solve modified versions of299

Poisson’s equation. The first, as mentioned above, solves Poisson’s equation including300

as a source a Boltzmann distribution of electrons. The electron distribution function301

is written as ne = ni exp ((φ− φp)/Te), where φp and Te are the user supplied plasma302

potential and electron temperature, and φ is the potential to be solved. This non-linear303

Poisson equation is solved using the full approximation multigrid method. This solver304

is used primarily in the simulation of plasma ion sources, avoiding the need for the305

costly detailed simulation of the electrons in the plasma. The second solver allows a306

variable dielectric constant. The user supplies a grid giving the spatial variation of307

the dielectric. Only 2D planar and axisymmetric versions are implemented. The third308

solver is used with the implicit PIC method. Warp uses the direct implicit method, with309

implementations in both 2D and 3D. The full implicit susceptibility is included without310

approximation beyond the usual linearization.311

4.1.2. Electromagnetic Warp’s electromagnetic solver is based on the Non-Standard312

Finite-Difference (NSFD) technique [37, 38], which is an extension of the Finite-313

Difference Time-Domain technique to larger stencils in the plane perpendicular to314

the direction of the finite difference. In effect, a finite average (or digital filtering)315

is performed orthogonally to the direction of the finite difference. The coefficients of the316

finite average can be set (by the user) to arbitrary values within some bounds and the317

rule that the sum equals unity for energy conservation. This gives the user some control318

on the numerical dispersion and Courant time step limits which do depend on those319

parameters. For a given set of parameters, the stencil reduces to the Yee stencil [22],320

for which, for cubic cells, the Courant time step multiplied by the speed of light is given321

by the cell size divided by
√
3, and the numerical dispersion vanishes along the cell 3D322

diagonals. As shown in [39], for a different given set of parameters, and for cubic cells, the323

Courant time step multiplied by the speed of light equals the cell size, and the numerical324

dispersion vanishes along the main axes. More details on the solver implementation and325

characteristics for several sets of coefficients are available in [23]. Also described in [23]326

are the implementation of Perfectly Matched Layers for the absorption of waves at grid327

boundaries and of Friedman’s damping algorithm for noise control [40]. In the same328

paper, it is shown that introducing a stride in the usage of standard linear filtering329

allows for construction of efficient iterative sideband digital filters that are nonetheless330

compact, thus well suited for implementation on parallel computers. In the current331

implementation, internal conducting surfaces are implemented by enforcing a null field332

within the conductors, and complicated conductor shapes are thus approximated by333

following grid lines.334
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Figure 1. Sketches of the implementation of mesh refinement in Warp with

the electrostatic (left) and electromagnetic (right) solvers. In both cases, the

charge/current from particles are deposited at the finest levels first, then interpolated

recursively to coarser levels. In the electrostatic case, the potential is calculated first at

the coarsest level L0, the solution interpolated to the boundaries of the refined patch

r at the next level L1 and the potential calculated at L1. The procedure is repeated

iteratively up to the highest level. In the electromagnetic case, the fields are computed

independently on each grid and patch without interpolation at boundaries. Patches

are terminated by absorbing layers (PML) to prevent the reflection of electromagnetic

waves. Additional coarse patch c and fine grid a are needed so that the full solution

is obtained by substitution on a as Fn+1(a) = Fn+1(r) + I[Fn(s) − Fn+1(c)] where F

is the field, and I is a coarse-to-fine interpolation operator. In both cases, the field

solution at a given level Ln is unaffected by the solution at higher levels Ln+1 and

up, allowing for mitigation of some spurious effects (see text) by providing a transition

zone via extension of the patches by a few cells beyond the desired refined area (red

& orange rectangles) in which the field is interpolated onto particles from the coarser

parent level only.

4.2. Mesh Refinement335

The mesh refinement methods that have been implemented in Warp were developed336

following the following principles: i) avoidance of spurious effects from mesh refinement,337

or minimization of such effects; ii) user controllability of the spurious effects’ relative338

magnitude; iii) simplicity of implementation. The two main generic issues that were339

identified are: a) spurious self-force on macroparticles close to the mesh refinement340

interface [41, 42]; b) reflection (and possible amplification) of short wavelength341

electromagnetic waves at the mesh refinement interface [43]. The two effects are due to342

the loss of translation invariance introduced by the asymmetry of the grid on each side343

of the mesh refinement interface.344

In addition, for some implementations where the field that is computed at a given345

level is affected by the solution at finer levels, there are cases where the procedure346

violates the integral of Gauss’ Law around the refined patch, leading to long range347
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errors [41, 42]. As will be shown below, in the procedure that has been developed in348

Warp, the field at a given refinement level is not affected by the solution at finer levels,349

and is thus not affected by this type of error.350

4.2.1. Electrostatic A cornerstone of the Particle-In-Cell method is that assuming a351

particle lying in a hypothetical infinite grid, then if the grid is regular and symmetrical,352

and if the order of field gathering matches the order of charge (or current) deposition,353

then there is no self-force of the particle acting on itself: a) anywhere if using the so-354

called “momentum conserving” gathering scheme; b) on average within one cell if using355

the “energy conserving” gathering scheme [29]. A breaking of the regularity and/or356

symmetry in the grid, whether it is from the use of irregular meshes or mesh refinement,357

and whether one uses finite difference, finite volume or finite elements, results in a net358

spurious self-force (which does not average to zero over one cell) for a macroparticle359

close to the point of irregularity (mesh refinement interface for the current purpose)360

[41, 42].361

A sketch of the implementation of mesh refinement in Warp is given in Figure 1362

(left). Given the solution of the electric potential at a refinement level Ln, it is363

interpolated onto the boundaries of the grid patch(es) at the next refined level Ln+1. The364

electric potential is then computed at level Ln+1 by solving the Poisson equation. This365

procedure necessitates the knowledge of the charge density at every level of refinement.366

For efficiency, the macroparticle charge is deposited on the highest level patch that367

contains them, and the charge density of each patch is added recursively to lower levels,368

down to the lowest.369
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Figure 2. Position history of one charged particle attracted by its image induced by

a nearby metallic (dirichlet) boundary. The particle is initialized at rest. Without

refinement patch (reference case), the particle is accelerated by its image, is reflected

specularly at the wall, then decelerates until it reaches its initial position at rest. If

the particle is initialized inside a refinement patch, the particle is initially accelerated

toward the wall but is spuriously reflected before it reaches the boundary of the patch

whether using the method implemented in Warp or the MC method. Providing a

surrounding transition region 2 or 4 cells wide in which the potential is interpolated

from the parent coarse solution reduces significantly the effect of the spurious self-force.

The presence of the self-force is illustrated on a simple test case that was introduced370

in [41] and also used in [42]: a single macroparticle is initialized at rest within a single371
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refinement patch four cells away from the patch refinement boundary. The patch at372

level L1 has 32× 32 cells and is centered relative to the lowest 64× 64 grid at level L0373

(“main grid”), while the macroparticle is centered in one direction but not in the other.374

The boundaries of the main grid are perfectly conducting, so that the macroparticle is375

attracted to the closest wall by its image. Specular reflection is applied when the particle376

reaches the boundary so that the motion is cyclic. The test was performed with Warp377

using either linear or quadratic interpolation when gathering the main grid solution378

onto the refined patch boundary. It was also performed using another method based379

on the algorithm given in [44], which employs a more elaborate procedure involving380

two-ways interpolations between the main grid and the refined patch. A reference case381

was also run using a single 128× 128 grid with no refined patch, in which it is observed382

that the particle propagates toward the closest boundary at an accelerated pace, is383

reflected specularly at the boundary, then slows down until it reaches its initial position384

at zero velocity. The particle position histories are shown for the various cases in Fig.385

2. In all the cases using the refinement patch, the particle was spuriously reflected near386

the patch boundary and was effectively trapped in the patch. We notice that linear387

interpolation performs better than quadratic, and that the simple method implemented388

in Warp performs better than the other proposed method for this test (see discussion389

below).390
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Figure 3. (left) Maps of the magnitude of the spurious self-force ǫ in arbitrary units

within one quarter of the refined patch, defined as ǫ =

√

(Ex − E
ref
x )2 + (Ey − E

ref
y )2,

where Ex and Ey are the electric field components within the patch experienced by one

particle at a given location and E
ref
x and E

ref
y are the electric field from a reference

solution. The map is given for the Warp and the MC mesh refinement algorithms and

for linear and quadratic interpolation at the patch refinement boundary.

(right) Lineouts of the maximum (taken over neighboring cells) of the spurious self-

force. Close to the interface boundary (x=0), the spurious self-force decreases at a

rate close to one order of magnitude per cell (red line), then at about one order of

magnitude per six cells (green line).
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The magnitude of the spurious self-force as a function of the macroparticle position391

was mapped and is shown in Fig. 3 for the Warp and MC algorithms using linear392

or quadratic interpolations between grid levels. It is observed that the magnitude of393

the spurious self-force decreases rapidly with the distance between the particle and394

the refined patch boundary, at a rate approaching one order of magnitude per cell for395

the four cells closest to the boundary and about one order of magnitude per six cells396

beyond. The method implemented in Warp offers a weaker spurious force on average397

and especially at the cells that are the closest to the coarse-fine interface where it is the398

largest and thus matters most.399

A method was devised for reducing the magnitude of self-force near the coarse-fine400

boundaries by orders of magnitude for the MC method by using a special deposition401

procedure near the interface [42]. The Warp method offers a simpler alternative as the402

method leaves the coarse grid solution free of self-force, within and around the patch,403

offering the possibility of reducing the effect of the self-force by simply extending the404

refinement patch by a few “transition” cells beyond the desired “effective” refined area.405

Within the effective area, the particles gather the potential in the fine grid. In the406

extra transition cells surrounding the refinement patch, the force is gathered directly407

from the coarse grid (an option, which has not yet been implemented, would be to408

interpolate between the coarse and the grid field solution within the transition zone so409

as to provide continuity of the force experienced by the particles at the interface). The410

number of cells allocated in the transition zones of patches is controllable by the user411

in Warp, giving the opportunity to check whether the spurious self-force is affecting412

the calculation by repeating it using different thicknesses of the transition zones. The413

control of the spurious force using the transition zone is illustrated in Fig. 2, where the414

calculation with Warp using linear interpolation at the patch interface was repeated415

using either two or four cells transition regions (measured in refined patch cell units).416

Using two extra cells allowed for the particle to be free of spurious trapping within417

the refined area and follow a trajectory that is close to the reference one, and using418

four extra cells improved further to the point where the resulting trajectory becomes419

undistinguishable from the reference one.420

Automatic remeshing has been implemented in Warp following the procedure421

described in [45], refining on criteria based on measures of local charge density magnitude422

and gradients. AMR Warp simulations were applied to the modeling of the front end423

injector of the High Current Experiment (HCX) [46], and provided the first numerically424

converged estimates of phase space beam distorsions, which directly affects beam quality425

[24]. Fig. 4 shows snapshots from 2D axisymmetric simulation of the souce area426

illustrating the automatic placement of refined patches, and 3D simulation of the full427

injector showing the beam generation, acceleration and transport.428

4.2.2. Electromagnetic The method that is used for electrostatic mesh refinement is429

not directly applicable to electromagnetic calculations. As was shown in section 3.4 of430

[47], refinement schemes relying solely on interpolation between coarse and fine patches431
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Figure 4. Snapshot from a 3D self-consistent simulation of the injector in the High

Current Experiment shows the beam emerging from the source at low energy (blue)

and being accelerated (green-yellow-orange) and transported in a four quadrupole front

end. The automatic layout of the mesh refinement patches from a 2D axisymmetric

simulation of the source area shows 2 levels of refinement, concentrating the finer

meshes around the emitter (white curve surface) and the beam edge (dark blue).

lead to the reflection with amplification of the short wavelength modes that fall below432

the cutoff of the Nyquist frequency of the coarse grid. Unless these modes are damped433

heavily or prevented from occurring at their source, they may affect particle motion and434

their effect can escalate if trapped within a patch, via multiple successive reflections435

with amplification.436

To circumvent this issue, an additional coarse patch (with the same resolution as437

the parent grid) is added, as shown in Fig. 1-right and described in [25]. Both the438

fine and the coarse grid patches are terminated by Perfectly Matched Layers, reducing439

wave reflection by orders of magnitude, controllable by the user [48, 49]. The source440

current resulting from the motion of charged macroparticles within the refined region is441

accumulated on the fine patch and is then interpolated onto the coarse patch and added442

onto the parent grid. The process is repeated recursively from the finest level down to443

the coarsest. The Maxwell equations are then solved for one time interval on the entire444

set of grids, by default for one time step using the time step of the finest grid. The field445

on the coarse and fine patches only contain the contributions from the particles that446

have evolved within the refined area but not from the current sources outside the area.447

The total contribution of the field from sources within and outside the refined area is448

obtained by adding the field from the fine grid F (f), and adding an interpolation I of449

the difference between the relevant subset s of the field in the parent grid F (s) and the450

field of the coarse grid F (c), on an auxiliary grid a, i.e. F (a) = F (f) + I[F (s)− F (c)].451

In effect, there is substitution of the coarse field calculated in the patch area by its452

fine resolution counterpart. The operation is carried recursively starting at the coarsest453

level up to the finest. An option has been implemented in which various grid levels454

are pushed with different time steps, given as a fixed fraction of the individual grid455
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Courant conditions (assuming same cell aspect ratio for all grids and refinement by456

integer factors). In this case, the fields from the coarse levels, which are advanced less457

often, are interpolated in time.458

The substitution method has two potential drawbacks due to the inexact459

cancellation between the coarse and fine patches of : (i) the remnants of ghost fixed460

charges created by the particles entering and leaving the patches (this effect is due to461

the use of the electromagnetic solver and is different from the spurious self-force that462

was described for the electrostatic case); (ii) the electromagnetic waves traveling on each463

patch at slightly different velocity due to numerical dispersion. The first issue results in464

an effective spurious multipole field whose magnitude decreases very rapidly with the465

distance to the patch boundary, similarly to the spurious self-force in the electrostatic466

case. Hence, adding a few extra transition cells surrounding the patches mitigates this467

effect very effectively. The tunability of Warp’s electromagnetic solver provides the468

means to optimize the numerical dispersion so as to minimize the second effect for a469

given application, which has been demonstrated on the laser-plasma interaction test470

case presented in [25]. Both effects and their mitigation are described in more detail in471

[25].472

As a test to the electromagnetic PIC implementation, Warp simulations of wave473

excitations by a beam propagating through plasma, as described in [50], were conducted.474

In these simulations, a hard-edged, elliptical, rigid beam propagates at constant velocity475

vz = 0.5c where c is the speed of light through an initially cold neutral plasma of initial476

density n0. The beam has a flat-top density profile of nb = n0/2, and an elliptical477

shape of length l = 15c/ωp and diameter d = l/10, where ωp is the electron plasma478

frequency. It is shown in [50] that waves with a wavenumber of approximately 2ωp/vz479

are generated in the plasma by the beam’s electrostatic field, and have larger amplitude480

inside the beam, due to their interaction with the beam’s sharp edges.481

Resolving the beam edge and the small structures developing in the wake inside the482

beam forces small cell sizes. The resolution that is needed for macroscopic convergence483

was explored in 2-1/2D in a series of four runs where the number of grid cells was varied484

from 64×160 to 512×1280 by incremental factors of 2. Third order spline interpolation485

was used for the beam and plasma macroparticle current deposition and force gathering.486

The details of the plasma wake were very similar between the two highest resolution487

cases, indicating that macroscopic convergence was reached. The results from the runs488

using 128× 320 and 512× 1280 grids are shown in Fig. 5. The result from the highest489

resolution run serves as the reference for subsequent calculations with mesh refinement.490

A run was conducted where the main grid had 128×320 cells and was complemented491

by two refinement patches (with successive refinement factors of 2 in each direction),492

such that the resolution in the central patch matched the resolution of the case of493

reference. The number and weight of the injected plasma macroparticles was varied,494

such that the number of macroparticles per cell in each grid at injection was constant.495

Results are plotted in Fig. 5 (bottom-left) showing a good reproduction of the fine496

scale structures within the central fine patch in good agreement with the reference case.497



16

!ω"#$%
&%'(% (%

)ω
"
#$
%

*&%

%&%

'*&%

+%

,%

-%

*%

&%

./#.&%

!ω"#$%
&%'(% (%

*&%

%&%

'*&%

)ω
"
#$
%

+%

,%

-%

*%

&%

./#.&%

!ω"#$%
&%'(% (%

*&%

%&%

'*&%

)ω
"
#$
%

+%

,%

-%

*%

&%

./#.&%

+%

,%

-%

*%

&%

./#.&%

01% 21%

$1% 31%

Figure 5. Electron density ne (normalized to the density of the injected plasma)

from Warp simulations in 2-1/2D for a), b), c) and 3D for d) of a rigid beam (thin

light-blue outline) propagating through a neutral plasma, for grid sizes of a) 128×320,

b) 512 × 1280, c) 128 × 320 (main grid, red box) + 128 × 640 (patch 1, orange box)

+ 128× 1280 (patch 2, yellow box), such that the resolution of patch 2 matched the

resolution of the grid used for b), d) grid size of 64 × 64 × 160 (main grid, red box)

+ 64× 64× 320 (patch 1, orange box) + 64× 64× 640 (patch 2, yellow box). For c)

and d), the number and weight of injected plasma macroparticles was adjusted to keep

the number of macroparticles per cell constant in each grid at injection in front of the

beam.

Lastly, a three-dimensional simulation with mesh refinement of the same physical setup498

was conducted. The grid setup and 3D isosurfaces of the plasma electron density as the499

beam enters the plasma are shown in Fig. 5 (bottom-right). As expected, structures500

similar to the ones observed in 2D are present within the beam envelope. The speedup501

achieved by the use of mesh refinement was estimated to be approximately one order of502

magnitude in 3D.503
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5. Modes of operation504

Thanks to a high degree of modularity and the usage of the Python language505

which allows for dynamic loading of functionalities, Warp can be used in various506

configurations: “standard Particle-In-Cell”, “transverse-slice”, “Gun mode”, “build-up”507

and “quasistatic”.508

full PIC mode “Gun” mode

!"!# !"$# !"%# !"&# !"'#

()*#

+,-./&0#

12$"%µ3#

Figure 6. (left) Rendering from a full 3D self-consistent time-dependent simulation

of NDCX-II, using the injector voltage configuration computed in gun mode, (right)

snapshot from calculation of steady flow of charged particles emitted from a hot plate

in the NDCX-II injector, using the gun mode. The equipotentials (blue lines) were

computed using the charge distribution of the previous iteration. Particle trajectories

are computed and accumulated (red) for the calculation of the next electrostatic

potential. Voltage is interactively adjusted on the electrodes (black) until an acceptable

solution is found.

5.1. Standard Particle-In-Cell509

In the default “standard Particle-In-Cell” mode, Warp follows a collection of charged510

macroparticles evolving under the influence of their self-field and externally applied511

fields in 3D (xyz), 2D axisymmetric (rz) or 2D planar (xy or xz). In the case of the512

modeling of charged particle beams (the default), z is the direction of (initial) beam513

propagation and a moving window is used to follow the beam as it propagates. A514

special warped-coordinate particle advance is used to treat particles in bends [16] and515

in that case, z maps to s, the path length coordinate on the nominal machine center516

line, as commonly defined in the accelerator community (but s is not a reference orbit).517

Independently of the dimensionality of the self-fields, the particles are advanced in 3D518

and have 3D positions and velocities. For reduced dimensional models, the appropriate519

integrations and projections are done for the charge deposition and field gather. With520

the axisymmetric model, advancing the particles in 3D avoids problems on axis. With521

particles in 3D, the diagnostics are consistent among the different models and can be522

directly compared.523
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5.2. Transverse slice524

The transverse slice model is used to simulate beams approximated as having infinite525

extent along the z-axis, i.e. effectively this is a steady-flow model. The particles are526

all initialized at a common z location, and each time step are advanced to the next z527

location, z + dz. Each particle will have its own time step, dependent on its z-velocity.528

In the warped coordinates, the particles are advanced to the next angle around the bend.529

The particle time step sizes will thus also be dependent on the radial position. Since530

the particle’s z-velocity can change during a time step, iterations are done correcting531

the time step sizes so that all particles are advanced to the same value of s. In the532

charge deposition, the weight of the particles is optionally scaled by vb/vp, the ratio of533

the beam velocity and the particle’s velocity, so that each particle represents a unit of534

current (rather than line-charge density). Also optionally, the fields from the previous535

and current time step can be used to calculate a self Ez field using a backward finite536

difference. This self Ez can become important if there are significant variations in537

transverse distribution along the beam.538

5.3. “Gun” mode539

The gun mode is used to model continuous steady flow of charged macroparticles that540

are at equilibrium with the externally applied fields, in non-paraxial situations where541

an accurate self longitudinal electric field is important and the slice model does not542

suffice. This mode is used to design charged particle injectors. In this mode, particles543

are injected on one time step only and the injection is turned off. Those particles are544

then tracked through the system until there is no particle left. On each time step, the545

charge density from the particles is accumulated. After all of the particles leave the546

system, the new field is calculated using the accumulated charge density. A selection of547

particles is saved each time step for diagnostic and plotting. This procedure is iterated548

until convergence to a steady state solution. Several non-exclusive optional procedures549

are available to speedup the convergence and reduce jitter: (i) a running averaging of550

the charge density is performed from one iteration to the next, (ii) the particles are551

tracked initially through a small fraction of the system which increases progressively552

after each iteration until it covers the entire system, (iii) solutions are computed using553

increasingly high resolution and particle statistics. Figure 6 shows snapshots from a full554

3D time-dependent simulation of the NDCX-II front end and from a “gun” steady flow555

calculation of the NDCX-II injector.556

5.4. Lorentz boosted frame557

A method was recently proposed to speed up full PIC simulations of a certain class of558

relativistic interactions by performing the calculation in a Lorentz boosted frame [51],559

taking advantage of the properties of space/time contraction and dilation of special560

relativity to render space and time scales (that are separated by orders of magnitude in561
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Figure 7. Warp simulations of scaled laser plasma acceleration stages: (top) in the

lab; (bottom) in a Lorentz boosted frame (laser pulse in blue/red; plasma wakefield

in pale blue/yellow). For a single 10 GeV acceleration stage, the simulation in the

boosted frame is more than 10,000 times faster than the simulation in the laboratory

frame.

the laboratory frame) commensurate in a Lorentz boosted frame, resulting in far fewer562

computer operations. The method has been applied successfully to the modeling of563

laser plasma acceleration [52, 53, 54, 13], electron cloud effects [17], free electron lasers564

[55], coherent synchrotron radiation [12], and production of ultrabright attosecond x-ray565

pulses [56].566

In a laser plasma accelerator, a laser pulse is injected through a plasma, creating a567

wake of regions with very strong electric fields of alternating polarity [57]. An electron568

beam that is injected with the appropriate phase can thus be accelerated to high569

energy in a distance that is much shorter than with conventional acceleration techniques570

[58]. The simulation of a laser plasma acceleration stage from first principles using the571

Particle-In-Cell technique in the laboratory frame is very demanding computationally, as572

the evolution of micron-scale long laser oscillations needs to be followed over millions of573

time steps as the laser pulse propagates through a meter long plasma for a 10 GeV stage.574

As illustrated in Fig. 7 showing snapshots from simulations of a downscaled LPA stage,575

in the laboratory frame the laser pulse is much shorter than the wake, whose wavelength576

is also much shorter than the acceleration distance (λlaser ≪ λwake ≪ λacceleration).577

In a Lorentz boosted frame moving at a speed near the speed of light with the laser578

in the plasma, the laser will be Lorentz expanded (by a factor (1 + vf/c)γf where579

γf = (1 − v2f/c
2)−1/2 and vf is the velocity of the frame and c is the speed of light).580

The plasma (now moving opposite to the incoming laser at velocity −vf ) is Lorentz581

contracted (by a factor γf). In a boosted frame moving with the wake (γf ≈ γwake),582

the laser wavelength, the wake and the acceleration length are now commensurate583

(λlaser < λwake ≈ λacceleration), leading to far fewer time steps by a factor (1 + vf/c)
2γ2

f ,584

hence computer operations [51, 13].585
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A speedup of up to a million times was reported for Warp modeling of a hypothetical586

1 TeV stage [59]. Control of a violent numerical instability that had been plaguing587

early attempts was obtained via the combination of: (i) the use of Warp’s tunable588

electromagnetic solver and efficient wideband filtering [23], (ii) observation of the589

benefits of hyperbolic rotation of space-time on the laser spectrum in boosted frame590

simulations [59], and (iii) identification of a special time step at which the growth rate591

of the instability is greatly reduced [23]. In addition, a novel numerical method for592

injecting the laser pulse through a moving planar antenna was introduced in Warp [13].593

5.5. Build-up594

build-up mode
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Figure 8. (left) Sketch of the build-up mode. The dynamics of electrons is followed

for a thin (2D) or thick (3D) slice located at a given location in the lattice, under

the influence of a legislated particle beam passing through the slice.; (right) Electron

density versus time from a benchmark of Warp versus Posinst in the simulation of the

build-up of electron cloud in a magnetic dipole section.

The build-up mode is used to study the accumulation of electrons at a given location595

in a particle accelerator. In this mode, the dynamics of electrons is followed for a thin596

(2D) or thick (3D) slice located at a given location in the lattice, under the influence597

of a legislated particle beam passing through the slice (Fig. 8-left). The electrons are598

described by a collection of macro-particles evolving under the influence of their own599

space charge, plus the field of an external beam, following the standard Particle-In-Cell600

(PIC) technique. The electron electric field is obtained in the static approximation from601

solving the Poisson equation. The field from the external (positively charged) beam is602

either prescribed analytically (using the Bassetti-Erskine formula [60]) or given from603

solving the Poisson equation over a prescribed charge distribution. The build-up mode604

has been successfully benchmarked against the 2D build-up code Posinst [18, 19]. An605

example of electron density history from Warp build-up simulations is contrasted with606

Posinst results in Fig. 8-(right).607
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5.6. Quasistatic608

quasistatic mode
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Figure 9. (left) Sketch of the quasistatic mode. A 2D slab of electron macroparticles

is stepped backward (with small time steps) through the beam field. The 2D electron

fields (solved at each step) are stacked in a 3D array, that is used to give a kick to the

beam. Finally, the beam particles are pushed forward (with larger time steps) to the

next station of electrons. In the quasistatic mode, the beam is distributed among n

slices, that are uniformly spread among N processors. Using a pipelining algorithm,

slices on a given processor are pushed from one station to the next, while the slices of

the previous processor will be pushed to the same station one time step later; (right)

Warp-Posinst simulation of two consecutive bunches (top) interacting with an electron

cloud (bottom) – the bunches and electron clouds have been separated for clarity.

The quasistatic mode is used to model the interaction of relativistic beams with609

electron clouds in particle accelerators, taking advantage of the separation of space and610

time scales between the beam particles and the electron cloud dynamics [61]. In this611

mode, a 2D slab of electron macroparticles is stepped backward (with small time steps)612

through the beam field (see Fig. 9-left). The 2D electron fields (solved at each step)613

are stacked in a 3D array, that is used to give a kick to the beam. Finally, the beam614

particles are pushed forward (with larger time steps) to the next station of electrons,615

using either maps or a Leap-Frog pusher.616

The parallelization in the transverse direction (perpendicular to s) uses domain617

decomposition of the particles and fields. The parallelization in the longitudinal618

direction (along s) uses pipelining, similarly (but not identical) to the strategy developed619

in QuickPIC [62]. Assuming that the beam is distributed among n slices of equal620

thickness along the longitudinal dimension, and that N processors are used for a run,621

n/N consecutive slices are assigned to each processor, as sketched in Fig. 9-left. During622

the first iteration, the electron distribution from the first station in the ring is evolved623

through the slices of processor N while processors 1 through N − 1 stay idle. The624

electron distribution is then passed to processor N − 1 and evolves through the slices625

that it contains, while processor N pushes the beam to station 2 and starts evolving the626
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corresponding distribution of electrons. After N steps, all processors are active and the627

procedure is repeated until the beam slices on processor 1 reach the desired propagation628

distance.629

Posinst routines for electron cloud generation and build-up are accessible through630

the Warp package in all modes including quasistatic, allowing for three-dimensional631

fully self-consistent simulations of the electron cloud build-up and its effect on the beam632

dynamics simultaneously, therefore including the memory of electron clouds between633

bunches, hence multi-bunch effects. Such simulations have been performed for 1000634

turns of up to three trains of 72 bunches each circling in the CERN SPS ring [11]. For635

moderately high resolution and statistics, 8 CPUs were used per RF bucket, for a total of636

5-10 hours runs using 11,520 CPUs on Franklin at NERSC. A colored three-dimensional637

rendering of two consecutive bunches and the interacting electron cloud is shown in Fig.638

9-(right). More details are available in [11].639

6. Summary and outlook640

The Warp code-framework has recently been augmented with various novel methods641

including PIC with adaptive mesh refinement, a large-timestep mover for particles642

of arbitrary magnetized species, a new relativistic Lorentz invariant leapfrog particle643

pusher, simulations in Lorentz boosted frames, an electromagnetic solver with tunable644

numerical dispersion and efficient stride-based digital filtering. With its new capabilities645

and thanks to a design that allows for a high degree of versatility, the range of application646

of Warp has considerably widened far beyond the initial application to the Heavy Ion647

Fusion Science program.648

Further developments are underway. Notably, a full implementation of AMR-PIC649

requires adaptive time-stepping for the particles as they cross different patches, similarly650

to the algorithm for multi-scale Particle-in-Cell plasma simulations proposed in [63]. An651

embryo of such a capability has been implemented inWarp based on sub-cycling methods652

derived from [64], where particles are sorted in groups that are advanced with different653

time steps. Progress will be reported as the implementation gets finalized.654
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